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A simple and general method is suggested for studying processes in which resonances or unstable particles 
are produced. The method consists of analyzing the experimental data in terms of all the possible angular cor­
relations among the decay products of the produced particles. The specific correlations that can be present in 
a number of experimentally feasible processes are explicitly tabulated. The usefulness of this method of 
analysis is illustrated by showing how the correlations provide extensive tests of various dynamical models of 
the production process such as one-particle exchanges. Independent of any models, a great deal can be 
learned about the production amplitude from just the correlations present when neither incident beam nor 
target are polarized, although, in general, additional correlations must be known to completely construct 
this amplitude. 

INTRODUCTION 

THE increasing amount of data on processes in­
volving the production and decay of unstable 

particles allows for the application of a simple and 
direct procedure for cataloging all possible information 
obtainable in the analysis of production reactions. The 
method consists of analyzing the processes in terms of 
all the angular correlations that can be present. A 
number of reactions are especially fruitful to study in 
this manner since the decay of the unstable particles 
involved can reveal considerable information con­
cerning their spin, parity, and state of polarization. 
This information sheds light not only on the properties 
of the unstable particle itself but can be used to study 
the production process. This method of analyzing 
experiments, while being considerably simpler than 
performing a conventional phase-shift analysis, is a 
completely general description. 

We have tabulated the kinds of angular correlations 
that can be present among the final particles in several 
production-decay processes which are experimentally 
feasible. In a number of instances, considerable data 
already exist. 

Correlations of the type considered here have been 
studied for some time in the investigation of nuclear 
levels and the compound model of the nucleus.1 In 
this paper we apply these ideas to the study of unstable 
particle production-decay processes. 

Various dynamical models, such as one-particle-
exchange approximations, can be tested by noting that 
these models imply that certain angular correlations 
either vanish or are related to others in a definite way. 
The implications of a number of current models of some 
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of the reactions are included and tests of their validity 
are suggested. The usefulness of these model tests has 
already been demonstrated in a preliminary analysis 
of the process K~-\-p —* A+co.2 

AlthoughH the angular correlations which can be 
present when neither the incident beam nor the target 
are polarized are inadequate, in general, to allow one 
to construct the complete matrix element for the 
process, a surprising amount can be learned from such 
experiments. In some simple examples we show ex­
plicitly how to extract information about the pro­
duction matrix element from the angular correlations 
when the initial particles are unpolarized. The addi­
tional correlations present in these examples when the 
target is polarized are also given in detail. A great deal 
more can be learned from these additional correlations, 
but presumably, experiments requiring a polarized 
target are more difficult to perform. 

ANGULAR CORRELATIONS 

A. 6-+!+-^++o-
Let us begin by considering processes of the type 

J++0-, e.g., 7T-+P-+A+K0. (Spin and 
parity are denoted by JT.) We will assume the target 
proton is unpolarized so that our present considerations 
will be independent of the initial state. The independent 
correlations present in this simple case are just the 
angular distribution of the final particles and the 
polarization of the A normal to the production plane. 

The most general matrix element for the process 
7r+p-^A-\~K can be expressed between free-particle 
spinors U(PA) and u(pp) in the form3 

u (PA) [>+ byhy • AT> (pp), 

o-+i+ 

2 S. M. Flatte, R. W. Huff, D. 0 . Huwe, F. T. Solmitz, and 
M. L. Stevenson, Bull. Am. Phys. Soc. 8, 603 (1963). 

3 We use natural units with jt = c=l. The metric is chosen so 
that the four vector product a-b = a'h—aofo. Dirac spinors 
satisfy (iyp-\-m)u(p) = 0 and u(p)(iyp-{-m)=0, where {7M,7r} 
= 25M„, 7M—yJt and 7 * P = Y* P+*y*E. In addition, 75=71727374. 
Also, the abbreviation e(abcd) = e^p^a^bpCpda will be used. 
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TABLE I. Angular correlations present in the process K~-\-p —» A-f-w are indicated by "X." Correlations excited by K exchange, 
K* exchange, and their interference are indicated by (K), (K*), and (K+K*), respectively. 

(t-Kuy (e-fiy ($-K„)(i'L„) (e-KJie-N) (Z-Lw)(e.N) 

1 

w.# 

W-1A 

W-LA 

X 

X 

(K),(K*) 

X 

X 

X 

X 

X 
(K+K*) 

IX 
(K+K*) 

X 
(K+K*) 

X 

X 

where pp, ph. are the momenta of the proton and lambda, 
respectively, and N is a four-vector which reduces to a 
unit three-vector N normal to the production plane 
in the laboratory system. The amplitudes a and b are 
invariant functions of the incident energy and lambda 
production angle. The lambda polarization is then 
proportional to Im(ab*) and would vanish for a simple 
model of production such as K* exchange. This is 
because the two amplitudes a and b are relatively real 
for such a model even though two independent ampli­
tudes are necessary to describe the K*Ap vertex. The 
reason for this is that analyticity does not allow either 
the electric or magnetic form factor to become complex 
in the scattering region (even in the presence of an 
anomalous threshold). The fact that the lambda cannot 
be polarized is then a straightforward prediction of a 
model in which the reaction is dominated by K* 
exchange. Analogous statements apply to other proc­
esses of this type such as w+N —>N+w, K+N—> 
S+7T, etc. 

B. 0-+£+ | + + 1 -
A more interesting class of reactions are those of the 

type 0 - + i + - > J + + l - , e.g., i £ - + ^ - > A+co.4 The 
cross section to produce A+co is bilinear in the co 
polarization vector e and at most linear in the A spin 
polarization W. (We mean by the co polarization vector 
e not the direction of its spin but rather the directions 
of the field components as in the usual description of a 
photon.) Since the co has spin-parity 1~ its decay into 
37r's is described by a matrix element of the form e-n, 
where e is the polarization vector of the co and n is a 
four-vector which reduces to the normal to the plane 
containing the three decay pions in their center of mass. 
Consequently, the subsequent 3w decay of the co essen­
tially measures e. Since e is a vector and W is a pseudo-
vector, parity conservation in the production process 
dictates, in a simple manner, all possible correlations 

which can be analyzed by the decay channels of the A 
and the co. In order to express these correlations in a 
convenient matrix form we introduce orthogonal co­
ordinate systems in both the co and A rest frames. In 
the co rest frame the basis vectors are chosen to be i f w, 
a unit vector in the direction of the incident meson 
beam N, a unit^vector normal to the production plane, 
and L^KuXN. 

Similarly in the A rest frame we have the orthogonal 
system i t A, N, £ A . (Note that i f A and K u as well as 
La, and LA are not the same vectors but are related 
through the Lorentz transformation connecting the A 
and co rest frames.) 

The twelve possible correlations, consistent with 
parity conservation and Lorentz invariance, are con­
veniently denoted in Table I by an UX" in the appro­
priate box. The strengths of the various correlations 
are functions of the production angle and c m . energy 
so that each entry corresponds to given set of production 
conditions. 

One possible use of such a correlation table is to make 
a comparison with predictions of various dynamical 
models. For example, one can test the hypothesis that 
the process 'K~+p—+A+co is dominated by a linear 
combination of K and K* exchanges.6 Not all of the 
twelve correlations will be excited if the process is 
dominated by such poles. In fact only those corre­
lations labeled by (K), (K*), or (K+K*) in Table I 
will be different from zero. The notation (K) indicates 
a contribution from K exchange alone, (K*) from K* 
exchange alone, and (K-\-K*) indicates contributions 
from the interference between K and K* exchanges. 
Moreover, there is one relation among the three 
(K+K*) terms dictated by the model and hence only 
two of the three (K+K*) terms are independent. One 
of the two independent correlations is 

(W-^)(^iU(e-iV), 

where pp is along the incident proton momentum in the 

4 Considerations, similar to those given here in this section, 
have been made by C. N. Yang and N. Byers (to be published). 5 See also R. Huff, Phys. Rev. 133, B1078 (1964)i 
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TABLE II . Angular correlations that can be present in the process 0~-f-J+ —> f ±(—> i + +0~)+0~, e.g., *•"+£ -> F*~(—> A+7r~)+^+ , 
are indicated by " ± . " The unit vector pf is along the momentum of the decay spin-J particle in the rest frame of the spin-§ particle. 
The polarization vector is W. The vectors K, Lf and N form a right-handed, orthonormal basis in the rest frame of the spin-§ particle, 
K being along the direction of the incident meson beam and N being normal to the production plane. 

1 (pr&){prKY 
or {prKY (Pf&)(PfK) or (prN)(prly 
or (prZy or or (prfi)(prK)(prL)* 
or {prK)(prL) (fa-N)(prL) or (prfi)(prL)(prit)* 

1 
or db 

(W-iV) 

(W-l) 
or ± -

(W-i) 

A rest frame. The other independent correlation is 

(i-K„)«iXK„).\ W+f J(W^A)^AJ , 

where £ A and i>A are the A energy and unit vector along 
the A momentum in the co rest frame, respectively, and 
W is the A polarization. The combination in the bracket 
is W expressed in the o) rest frame. In addition, the 
contributions to the correlations 1 and (e-Ku)2 coming 
from just K* exchange are of equal magnitude but 
opposite in sign. 

Note that if the process were dominated by a pure 
spin-zero exchange then eleven of the twelve corre­
lations would have to be zero which is a more exhaustive 
test than the familiar Treiman-Yang test.6 

C. 0 - + i + - + 3 / 2 ± ( - > £ + + 0 - ) + 0 -

Two examples of this reaction are the processes 
7 r+^ -> iV*( ->^+7r )+7rand7r+^->F*( ->A+7r )+^ . 7 

We consider here only parity conserving decays of the 
spin-f particle. If only the angular distribution of the 
^+7r(A+?r) is measured then there are at most four 
possible correlations since no higher powers than 
cos20 are permitted in a spin-f decay in the N* or F* 
rest system.8 However if the decay proton or A polari­
zation is measured along with the decay distribution 
then cos40 terms are permissible in the case of f~, but 
only cos20 terms in the case of f+. The differences in 
correlations due to the different parities are easily seen 
from the general correlation table which can be con­
structed from the matrix element for the process. 

6 S. B. Treiman and C. N. Yang, Phys. Rev. Letters 8, 140 
(1962). 

7 Reactions of this type in connection with spin and parity 
determination have been considered by N. Byers and S. Fenster, 
Phys. Rev. Letters 11, 52 (1963); R. H. Capps, Phys. Rev. 122, 
929 (1961); R. Gatto and H. P. Stapp, ibid. 121, 1553 (1961); C. 
Itzykson and M. Jacob, Phys. Letters 3, 153 (1963). 

8 C. N. Yang, Phys. Rev. 74, 764 (1948). 

This matrix element, in the rest system of the spin-f 
particle, can be expressed between spinors of the initial 
and final spin-J particles in the form 

* ( # / ) 7 5 ( 1 = F / 3 ) { [ P / . K - 1 ( Y - P / ) ( Y - K ) ] 

XLA^+iA^yKDuiPi), 

where pi and pf are the momenta of the initial and 
final spin-| particles, K is the initial meson momentum, 
and L is a linear combination of p»- and K which is 
orthogonal to K in rest system of the spin-f particle. 
The upper (lower) signs refer to f+ ( f - ) . The coefficients 
Ai(±)-At(±) are complex invariant functions depending 
only on the production process, i.e., they depend on 
the initial energy and the angle at which the spin-f 
particle is produced but not on the decay angle of the 
final spin-J particle. The general angular distribution 
of the decay can be determined by squaring the above 
matrix element and averaging over initial target spins 
in which case the correlation matrix will take the form 
shown in Table II . Correlations possible for the f+ case 
are labeled by + and for the f~ case by —. The rows 
of this correlation matrix refer to the polarization 
directions of the decay spin-J particle in the rest frame 
of the spin-f resonance while the columns refer to the 
angular distribution of the decay spin-| particle in the 
rest frame of the spin-f resonance. 

In the case of reactions such as ir-\-p-+ Y*+K and 
K+p-+ N*+K, etc., single pion or kaon exchange is 
not possible because of parity conservation. However, 
single vector-meson exchange is a possible model 
of such reactions. The i£*-exchange model predicts that 
the lambda in the reaction T+p—> F*(—> A+ir)+K 
would not be polarized for the same reasons as dis­
cussed in Sec. A. Similarly, the proton in the reaction 
K+p—> N*(-^ p-\-ir)-\-T could not be polarized if the 
exchange of a single p dominated the process. The only 
possible correlations would then be the four terms in 
Table I I for unpolarized decay spin-! particle (i.e., 
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TABLE III . Angular correlations that can be present in the process 0~+§ + —> f ±(—» J + +0~)+ l~ , e.g., iT+p —> N*°(—> p-f-7r~)+co, 
are indicated by using " ± . " The unit vector p/ is along the momentum of the spin-J particle in the rest frame of the spin-| particle. 
The polarization vectors of the spin-f and spin-1 particles are W and e, respectively. The vectors K, L> and N (i?w, £«, and Nw) 
form a right-handed orthonormal basis in the rest frame of the spin-f (1) particle, K(KU) being along the direction of the incident 
meson beam and i9"(i9"w) being normal to the production plane. 

1 
or 

W-N 

w-k 
or 

W-L 

or 
or 
or 

or 
or 
or 

1 
(e-ito)2 

or 

I 
(t-kay 
(i-Ly 
y-kjw-Z*) 

or 

or 
or 
or 

1 
(prky 
(prly 
(prK)(prL) 

± 

=t 

(prN)(prk) 
or 

(prN)(h'L) 

± 

± 

or (prN)(prly 
or (prN)(prk)(prLy 
or &r$)(prL)(prky 

-

-

the lambda or proton). All four of these correlations 
can_̂ be excited in the case of the most general inter­
action at the vertex of the spin-J, spin-1, and spin-f 
particles. 

Sakurai and Stodolsky9 have suggested a special form 
of this latter interaction based on the "p-photon 
analogy" which leads to a reduction in the possible 
number of correlations. They show that for a "mag­
netic dipole p" the decay distribution in the N* rest 
system for the reaction K+.p—*N*+K would be of 
the form 

l+3(prNT, 

where pf and N are unit vectors along the decay proton 
and normal to the production plane, respectively, in the 
N* rest system. Thus their model predicts only one 
independent correlation to be present out of a possible 
four. The required vanishing of the remaining three 
correlations provides a test of the model. 

D. 0 -+*++• 3/2±(->i++0-) + l -

Some examples of processes of this type are K+p —> 
N*+K*, K-\-p—> F*+co, etc. We consider only parity 
conserving decays of the spin-f particle. The analysis 
of the angular correlation combines the ideas of Sees. 
B and C, allowing the correlation table to be written 
down directly from Tables I and II. The conditions of 
parity conservation, linearity in the decay spin-| 

9 J. J. Sakurai and L. Stodolsky, Phys. Rev. Letters 11, 90 
(1963). 

polarization W, and bilinearity in the polarization 
vector e of the produced spin-1 particle lead to the 
correlations summarized in Table III. In this table 
angular correlations possible for spin f± are indicated 
by " ± . " The polarization components W-K, W-L, 
and W-N of the spin-| particle and the direction 
cosines of its momentum pfK, pfL, and pfNider to 
the rest frame of the spin-f particle. Similarly, the 
components of the polarization vector e-K^ e-L^ and 
e-Na of the spin-1 particle refer to its rest system. 
The vector e is the normal to the plane of the 37r's in a> 
decay or is along one of the decay mesons in either p 
decay or K* decay. 

In reactions like K+p -> N*+i£* and w+p -» N*+p 
where single-pion exchange could be the dominating 
mechanism the correlation table will contain only a 
few terms. In fact for such a mechanism there can be 
no polarization of the decay spin-| particle and the 
decay angular distribution will be of the form 

D+3 ($•£)*] (aX)1, 
where q and p are unit vectors along the directions of 
the initial and final spin-J particles, respectively, in the 
rest system of the spin-f particle. Hence the pure 
single-pion-exchange model predicts 116 (68) of the 
possible 120 (72) correlations to be zero for spin f+ (f~). 

We remark that correlation tables for producing a 
spin-2 particle, decaying into 2 spin-zero bodies, rather 
than spin one can be easily written down in analogy to 
Tables II and III. The only difference here is that the 
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TABLE IV. Possible angular correlations present in the process pp —* AA are indicated by "X". Those correlations excited by K 
exchange, K* exchange, and their interference are indicated by (K), (K*), and (K-\-K*), respectively. 

1 

(WA 

(WA 

(WA 

•NA) 

•KA) 

•LA) 

1 

X 
(K),(K*) 

X 

( W A - # A ) 

X 

X 
(K*),(K+K*) 

( W A - 1 A ) 

X 

X 
(K*),(K+K*) 

(WA-XA) 

X 
(K*),(K+K*) 

X 

entries referring to the spin-2 particle should be 
quadrilinear in the decay momentum rather than 
bilinear as in the spin-1 case. 

E. r + i + ^ £+(-^ i++o-)+!+(-+ i++o~) 
Here10 we have in mind processes like p+p —•» A+A, 

2 + 2 , etc. The correlation table for this case, Table IV, 
can be easily written down in a similar manner to Table 
II. The condition of parity conservation in the pro­
duction process leads to the eight possible correlations 
which are marked in Table IV. By charge conjugation 
symmetry only six of the possible eight are independent. 

Possible mechanisms for processes like p+p —» A+A 
might be a combination of K and K* exchanges similar 
to the model in the case of the reaction K~+p —» A+o>. 
In this case six of the possible eight correlations are 
excited and are indicated with the same notation as in 
Table II. One sees that there is a simple test for such 
a model involving only the components of the A polari­
zation perpendicular to the production plane which 
should be zero if the process is dominated by K and 
K* exchanges. 

JL+4-A+. 
2 1^2 

3/2±(->i++0-)+3/2±(- £++o-) 
Examples of such reactions are p+p —> N*+N* or 

p+p—> Y*+Y*. As before, parity conservation in the 
production and decay as well as at most quadrilinearity 
in the decay spin-| momentum and linearity in the 
decay spin-f polarization dictates the allowable cor­
relations (indicated by X in Table V). Because of the 
possibility of measuring the polarization of the decay 
spin-J particle this table is very large and is essentially 
the product of Table II with itself. One has then 800 
allowable correlations out of a possible 1600. 

A process such as p+p —> N*+N* dominated by 
single-pion exchange would lead to only unpolarized 

10 Angular correlations in the process p+p —» A+A where neither 
beam nor target are polarized have been given explicitly by C. H. 
Chan, Phys. Rev. 133, B431 (1964). 

final spin-| particles and an angular distribution of 
decay products of N*N* of the form 

Cl+3(^- i t ' ) 2 ]X[l+3($-Xp] , 

where qf is a^unit vector along the decay antiproton 
momentum, Kf is a unit vector along the incident p 
both in the iV* rest frame; q is a unit vector along the 
decay proton and i t is a unit vector along the incident 
proton in the iV* rest system. Thus, the one-pion-
exchange (OPE) model would show only 4 out of a 
possible 800 correlations. 

PRODUCTION AMPLITUDES 

A. 0~+i+- |++o-
Let us consider11 the process ir~-\-p-~>A-{-K0 for 

definiteness. The matrix element for a process of this 
type, can be written in the form u(pA)\ji-)rbysyN~] 
Xu(pp), where a and b are complex invariant functions 
of energy and angle, N iŝ  a four vector which reduces 
to a unit three-vector N normal to the production 
plane in the laboratory system, and pv and pA are the 
proton and lambda four-momenta, respectively. Since 
the over-all phase is arbitrary, only the relative phase of 
a and b is of importance. The transition probability 
between proton and lambda polarization states de­
scribed by the four-vector Wv and WA is obtained 
simply by squaring the matrix element. This result is12 

|^|2=(|fl|a+|ft|2)+2Im(a*i)(WA-^+Wp-i^) 
+2\b\^Wp-N)(WA'N)+(\a\"-\b\')(Wp^A) 

where WA and Wp are the lambda and proton polari­
zations in their respective rest frames. 

11 Considerations similar to this section have been employed in 
the nucleon-nucleon problem by R. Schumacher and H. Bethe, 
Phys. Rev. 121, 1534 (1961). 

12 The normalization of the amplitude A can be chosen such that 
the differential cross section in the center of mass is simply given 
by d<r/dQ= \A |2. 
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It is clear from the above equation that there are a B. 0~+f+—> i + + l ~ 
total of four independent correlations which we can T J . , - ^ , L * , r 

, , i r Let us consider the process K~-jrp —>A+w for 
definiteness. The most general form of the matrix 

(i) the angular distribution, which gives the term element for a process of this type can be put in the form 
^ . t 1 ? ! 2 ; , . . ,. , , *(p'){Laie-Kys+aze-fy*+a&-Nl(l+iyrt>N) 

(11) the lambda polarization perpendicular to the , r ^ , T , 7V7-i/1 . A m /.s 
production plane, which gives Im (arb); r 

(iii) the lambda polarization along the initial proton where ar-aQ are invariant functions of energy and angle 
polarization which gives \a\2— \b\2; and p, p', K, and q are the four-momenta of the 

(iv) the lambda polarization along the normal to the proton, lambda, kaon, and omega, respectively. In 
plane containing the incident proton polarization and the co rest frame the space-like components of K, L, 
the normal to the production plane, which gives and iV reduce to an orthogonal coordinate system such 
Re (#*&)• ^ a * ^ *s a u n ^ v e c t o r normal to the production plane, 

K iŝ  a unit vector along the beam direction, and 
It is clear that |a | , |6 | , and the relative phase of a L=NXJ£. The vector e describes the o) field and 
and b can be obtained easily from these and that all satisfies q-e=0 and e2=l. 
four correlations are necessary for a unique solution. Taking the matrix element between proton and 

Without a polarized target only correlations (i) and lambda polarization states described by four vectors 
(ii) are present and the maximum information ob- W and W, respectively, and squaring gives the fol-
tainable is | a | 2 + | b |2 and Im (#*£)• lowing transition rate12: 

MI2=C(ki|2+k2|2)(e-^)2+(k3I
2+|a4I

2)(^L)2 

+ 2Re(axaz*+a2a4*)(e-K)(e-L)^(-MpmA-p'^ 

+ 2 Re(a1ae*+a2ab*)w,p(W-p')(e-K)(e'N)-2 Rz(azah*+a±a%*)ntA{W' -p)(e-L){e-N) 
+ (\a2\

2-\al\*)(e-Ky(mmp+P'P%(W-W')'N2+(\a^-
+2Rt(a2a^-a1az^)(e'K)(e'L)(mAmp+P'P%(W-W,)'N'] 
+ (\a6\

2-\a5\
2)(e'NY(mAmp+P'P%(W+Wf)'N2+2iIm(a2a^-a^ 

+ 2iIm{a±as*-azah*){erL)(e-N)€{pp'NW,)+^^ 
+ 2iIm{a^-aza^){e'L){e'N)e{ppfNW)+2Reala^{e-KY{W 
+ 2 R e W ^ - £ ) 2 ( ^ - ^ 0 ( w A ^ ^ 
+2 T^&**(e-N)\W-W')(mLmp-p-p')-^ Reaza4*(e-L)2(W'P')(W'P) 
-2Rz(axaf+a2az*)(e-K)(e' L){W - p')(W' • p)+^ 
+ \{ai-a2){e'K)+{az-ai)(e-L)\2{W'N){Wf-N)^ 
+ 2Rz{a2a^-a1ah*)(e-K)(e-N){W'N)(W'-p)M^ 
+ 2Re(a2a5*-a1a6*)(e-K)(e-N)(W''N)(W'Pf)mp+^ 
-2iIm(a1a^+a2ah*)(e-K)(e'N)€(pprWW,)-2iIm^ 
+2iIm{abas*)(e-Ny[mAe{pNWWf)+Mp€W 
- 2% Im(a3a4*) (e• L)2[mAe(pNWW')+nipe(p,NW,W)~] 
+ 2iIm(a2az*-a1a4*)(e-K)(e-L)tmAe(pNWW0+^ 
+iIml(a1~a2)(as*~a^(e-K)(e-N)£(W'N)e(NW'p 

+iImt(az-a4)(a5*-a6*)l(e-L)(e-N)[(W-N^ 

As can be seen from this expression there are a total (iv) | az |
2— | a± |2 

of 48 correlations present when the target is polarized. (v) I #5 1
2+ I a61

2 

However, only 32 are linearly independent. / - \ i i2_ i 12 
The maximum information one can obtain with an , ... ( ^ ^ 

unpolarized target, as can be seen by putting W=0 \U. K^a^^ra^J 
in the above equation is given by the following 12 (vm) Re(ai#3 — a2a± ) 
correlations: (ix) Re (axa^+a2a^) 

(i) I a± 12+ I a21
2 (x) Im (a^* - a2a6*) 

(ii) I ai 12 — j a2 j 2 (xi) Re (<z3a6*+#406*) 
(iii) I az 1

2+1 aA |2 (xii) Im (aza5*—a4a6*). 
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TABLE V. Angular correlations for the process p+p —> F*(—> A7r) + F*(-» Air). The rows refer_to the angular distribution and polari­
zation distribution of the A in the Y* rest frame and similarly the columns refer to the A in the F* rest frame. Allowed correlations are 
indicated by X. All vectors except W and W are unit vectors. 

\ A 

Particle 
correlations 

l o r (q-K)2 

or(q .L) 2 or(q .K)(q.L) 

(q.K)(q.N)or(q.L)(q-N) 
or (q-K)3(q-N)or (q-L)*(q-N) 

or (q.K)*(q.L)(q.N) 
or (q-L)«(q-K)(q-N) 

ntiparticle 
correlations 

\ -

1 

W-N 

W-K 

W-L 

1 

W-N 

W-K 

W-L 

or 

1 

X 

X 

X 

X 

l o r (q'-K')2 

(q ' .L')2or(q'-K')(q ' 

W'-N' 

X 

X 

X 

X 

W - K ' 

X 

X 

X 

X 

•I/) 

W - L ' 

X 

X 

X 

X 

or (q 

t 

1 

X 

X 

X 

X 

•K')(q'-N')or 
'•K')3(q'-N)oi 
or (q'-K02(q' 
or (q'-L')2(q'' 

(q'-L')(q'-N') 
• (q'-LOW-NO 
-LOCq'-NO 
•K0(q'-N0 

W - N ' W'-K' 

X 

X 

X 

X 

X 

X 

X 

X 

W - L ' 

X 

X 

X 

X 

The first six correlations determine the magnitudes 
of each amplitude. Since the over-all phase is arbitrary, 
there remain five independent phases which unfor­
tunately are not uniquely determined by the last six 
correlations. The degree of ambiguity will depend on 
the actual values of the correlations. For example, 
should it happen that only a\ and <z3 or only a2 and a± 
were substantially different from zero in some region 
of energy, the sign of their relative phase would be the 
only ambiguity occurring in the construction of the 
amplitude. 

In general, the solutions for the phases can be ob­
tained in the following manner: Let an= \an\ exp(idn) 
and choose 06=0 by adjusting the arbitrary over-all 
phase. From correlations (vii) and (viii) one can deter­
mine cos (61—6S) and cos(02—04). For each choice of 
the signs of 0X—03 and 02—04, one can solve the re­
maining relations for 02, 04,03-05, and 0i—05. In general, 
one can go no further. 

We see the correlations that are present when the 
target is unpolarized do not determine the production 
amplitudes uniquely but, in general, lead to several 

sets of amplitudes, the extent of the indeterminancy 
depending on the actual values of the correlations. 
Although it is clearly necessary to measure some corre­
lations that can be present only when the target is 
polarized to completely remove these ambiguities, more 
than one might anticipate can be learned even with an 
unpolarized target. 

In certain cases discussed above involving the pro­
duction and decay of spin-f particles, the possible 
number of correlations far exceeds the number of 
independent amplitudes even for an unpolarized target. 
I t is an interesting question whether it is possible, in 
these cases, to learn the entire matrix element without 
the use of a polarized target. 
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